Analysis for Genetic Modifiers of Disease Severity in Patients With Long-QT Syndrome Type 2.
نویسندگان
چکیده
BACKGROUND Considerable interest exists in the identification of genetic modifiers of disease severity in the long-QT syndrome (LQTS) as their identification may contribute to refinement of risk stratification. METHODS AND RESULTS We searched for single-nucleotide polymorphisms (SNPs) that modulate the corrected QT (QTc)-interval and the occurrence of cardiac events in 639 patients harboring different mutations in KCNH2. We analyzed 1201 SNPs in and around 18 candidate genes, and in another approach investigated 22 independent SNPs previously identified as modulators of QTc-interval in genome-wide association studies in the general population. In an analysis for quantitative effects on the QTc-interval, 3 independent SNPs at NOS1AP (rs10494366, P=9.5×10(-8); rs12143842, P=4.8×10(-7); and rs2880058, P=8.6×10(-7)) were strongly associated with the QTc-interval with marked effects (>12 ms/allele). Analysis of patients versus general population controls uncovered enrichment of QTc-prolonging alleles in patients for 2 SNPs, located respectively at NOS1AP (rs12029454; odds ratio, 1.85; 95% confidence interval, 1.32-2.59; P=3×10(-4)) and KCNQ1 (rs12576239; odds ratio, 1.84; 95% confidence interval, 1.31-2.60; P=5×10(-4)). An analysis of the cumulative effect of the 6 NOS1AP SNPs by means of a multilocus genetic risk score (GRS(NOS1AP)) uncovered a strong linear relationship between GRS(NOS1AP) and the QTc-interval (P=4.2×10(-7)). Furthermore, patients with a GRS(NOS1AP) in the lowest quartile had a lower relative risk of cardiac events compared with patients in the other quartiles combined (P=0.039). CONCLUSIONS We uncovered unexpectedly large effects of NOS1AP SNPs on the QTc-interval and a trend for effects on risk of cardiac events. For the first time, we linked common genetic variation at KCNQ1 with risk of long-QT syndrome.
منابع مشابه
KCNE1 and KCNE2 variants in Patients with Long QT Syndrome
Introduction: Long QT syndrome (LQTS) is a type of ventricular arrhythmia characterized by prolonged QT intervals on electrocardiogram or delay in ventricular repolarization and it can lead to syncope, seizure and sudden cardiac death. Here, KCNE1 and KCNE2 variants are studied among Iranian affected families with this syndrome. Materials and Methods: Fifty patients referring to Rajaei Cardiov...
متن کاملLack of association between coding region of KCNE2 gene and the congenital long QT syndrome in an Iranian population
Introduction: Congenital long QT syndrome (LQTS) is a cardiac disorder characterized by QT interval prolongation at basal ECG. Different LQTS genes encode ion channel subunits or proteins involved in regulating cardiac ionic currents. Long QT syndrome type 6 (LQT6) is caused by mutation in the KCNE2 gene. Our research aimed to analyze genetic variants of KCNE2 gene causing the disease in Irania...
متن کاملAnalysis for Genetic Modifiers of Disease Severity in Patients with Long QT Syndrome Type 2 Running title
متن کامل
Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity.
Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an L...
متن کاملThe relationship between Tonic-Clonic sizures in children and increased time of ventricular repolarization
Background: Long QT syndrome (LQTS) is a disorder in which electrical cardiac ventricular repolarization is impaired. It results in an increased risk of an irregular heartbeat which can result in palpitations, fainting, drowning, or sudden death. Long QT Syndrome may present as tonic-clonic seizure or a seizure-like disorder. By taking a superficial electrocardiogram (ECG) and proper diagnosis,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Cardiovascular genetics
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2015